MongoDB to Power BI

This page provides you with instructions on how to extract data from MongoDB and analyze it in Power BI. (If the mechanics of extracting data from MongoDB seem too complex or difficult to maintain, check out Stitch, which can do all the heavy lifting for you in just a few clicks.)

What is MongoDB?

MongoDB, or just Mongo, is an open source NoSQL database that stores data in JSON format. It uses a document-oriented data model, and data fields can vary by document. MongoDB isn't tied to any specified data structure, meaning that there's no particular format or schema for data in a Mongo database.

What is Power BI?

Power BI is Microsoft’s business intelligence offering. It's a powerful platform that includes capabilities for data modeling, visualization, dashboarding, and collaboration. Many enterprises that use Microsoft's other products can get easy access to Power BI and choose it for its convenience, security, and power.

With high-value use cases across analysts, IT, business users, and developers, Power BI offers a comprehensive set of functionality that has consistently landed Microsoft in Gartner's "Leaders" quadrant for Business Intelligence.

Getting data out of MongoDB

The process of pulling data out of MongoDB depends on how you've loaded data into MongoDB. In some cases, it may be impossible to extract all of your data, because NoSQL databases don't require structure (i.e. specific columns). Relational databases, such as those used for data warehouses, use a more traditional, rigid structure. You'll need to defined a structure in the relational database into which you can insert MongoDB data.

Don't stress about the confusing data structure. Lots of the data that's loaded into MongoDB is created by a computer, so it probably has a pretty predictable structure. If you can find specific fields that exist for every record, you're well on your way. Make sure these fields appear in the records of each collection you'd like to replicate from MongoDB. There are many ways to do this. The most popular method to get data from MongoDB is to use the find() command.

Sample MongoDB data

MongoDB stores and returns JSON-formatted data. Here's an example of what a response might look like to a query against the products collection.

db.products.find( { qty: { $gt: 25 } }, { _id: 0, qty: 0 } )

{ "item" : "pencil", "type" : "no.2" }
{ "item" : "bottle", "type" : "blue" }
{ "item" : "paper" }

Loading data into Power BI

You can analyze any data in Power BI, as long as that data exists in a data warehouse that's connected to your Power BI account. The most common data warehouses include Amazon Redshift, Google BigQuery, and Snowflake. Microsoft also has its own data warehousing platform called Azure SQL Data Warehouse.

Connecting these data warehouses to Power BI is relatively simple. The Get Data menu in the Power BI interface allows you to import data from a number of sources, including static files and data warehouses. You'll find each of the warehouses mentioned above among the options in the Database list. The Power BI documentation provides more details on each.

Analyzing data in Power BI

In Power BI, each table in the data warehouse you connect is known as a dataset, and the analyses conducted on these datasets are known as reports. To create a report, use Power BI’s report editor, a visual interface for building and editing reports.

The report editor guides you through several selections in the course of building a report: the visualization type, fields being used in the report, filters being applied, any formatting you wish to apply, and additional analytics you may wish to layer onto your report, such as trendlines or averages. You can explore all of the features related to analyzing and tracking data in the Power BI documentation.

Once you've created a report, Power BI lets you share it with report "consumers" in your organization.

Keeping MongoDB data up to date

Fine job! You are the proud developer of a script that moves data from MongoDB to your data warehouse. This works as a one-shot deal. It's good to think about what will happen when there is new and updated data in MongoDB.

One option that works would be to load the entire MongoDB dataset all over again. That would certainly update the data, but it's not very efficient and can also cause terribly latency.

The smartest way to get data updated from MongoDB would be to identify keys that can be used as bookmarks to store where you script left off on the last run. Fields like updated_at, modified_at, or other auto-incrementing data are useful here. With that done, you can set up your script as a cron job or continuous loop to identify new data as it appears.

From MongoDB to your data warehouse: An easier solution

As mentioned earlier, the best practice for analyzing MongoDB data in Power BI is to store that data inside a data warehousing platform alongside data from your other databases and third-party sources. You can find instructions for doing these extractions for leading warehouses on our sister sites MongoDB to Redshift, MongoDB to BigQuery, MongoDB to Azure Synapse Analytics, MongoDB to PostgreSQL, MongoDB to Panoply, and MongoDB to Snowflake.

Easier yet, however, is using a solution that does all that work for you. Products like Stitch were built to move data automatically, making it easy to integrate MongoDB with Power BI. With just a few clicks, Stitch starts extracting your MongoDB data, structuring it in a way that's optimized for analysis, and inserting that data into a data warehouse that can be easily accessed and analyzed by Power BI.